- by Atom Transfer Radical Polymerization," Macromolecules, 33, 5399 (2000a).
- Shen, Y., S. Zhu, and R. H. Pelton, "Atom Transfer Radical Polymerization of Methyl Methacrylate by Silica Gel Supported Copper Bromide/Multidentate Amine," *Macromolecules*, **33**, 5427
- Shen, Y., S. Zhu, and R. H. Pelton, "Packed Column Reactor for Continuous Atom Transfer Radical Polymerization: Methyl Methacrylate Polymerization Using Silica Gel Supported Catalyst," Macromol. Rapid Commun., 21, 956 (2000c).
- Shen, Y., S. Zhu, and R. H. Pelton, "Supported Atom Transfer Radical Polymerization of Methyl Methacrylate Mediated by CuBr-tetraethyldiethylenetriamine Grafted onto Silica Gel," J. Polym. Sci. Polym. Chem., 39, 1051 (2001a).
- Shen, Y., S. Zhu, and R. H. Pelton, "Effects of Supporting Spacer on the Supported Atom Transfer Radical Polymerization of Methyl Methacrylate," Macromolecules, 34, 5812 (2001b).
- Shen, Y., and S. Zhu, "Atom Transfer Radical Polymerization of Methyl Methacrylate Mediated by Copper Bromide-Tetraethyldi-

- ethylenetriamine Grafted on Soluble and Recoverable Poly(ethyl-
- ene-b-Ethylene Glycol) Supports," *Macromolecules*, **35**, 8603 (2001). Wang, J., and K. Matyjaszewski, "Controlled/Living Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted By a Cu(I)/(Cu(II) Redox Process," Macromolecules, 28, 7901
- Zeng, F., Y. Shen, S. Zhu, and R. H. Pelton, "Synthesis and Characterization of Comb-Branched Polyelectrolytes: 1. Preparation of Cationic Macromonomer of 2-(Dimethylamino)ethyl Methacrylate by Atom Transfer Radical Polymerization," Macromolecules, 33, 1628 (2000).
- Zhu, S., "Modeling of Molecular Weight Development in Atom Transfer Radical Polymerization," Macromol. Theory Simul., 8, 29 (1999).
- Zhu, S., Y. Shen, and R. H. Pelton, "Supported Controlled Radical Polymerization and Continuous Packed Column Reactor Technology," U.S. Patent No. 2,307,438 (2000).

Manuscript received June 1, 2001, and revision received Apr. 16, 2002.

## **Errata**

For the article titled, "Electromagnetics, Heat Transfer, and Thermokinetics in Microwave Sterilization" by H. Zhang, A. K. Datta, I. A. Taub, and C. Doona (pp. 1957-1968, September 2001), the authors require a second reproduction of Figures 7 and 16 for clarification of details.

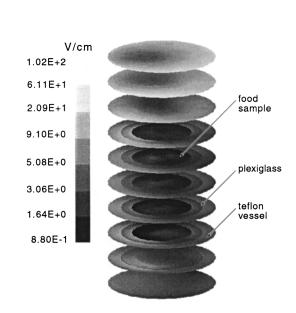



Figure 7. Electric fields in food sample, plexiglass, and teflon vessel for the assembly in Figure 2 during heating stage 1 of 0.7% salt ham.

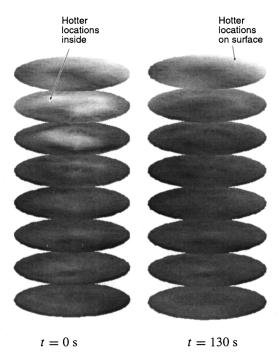



Figure 16. Horizontal section of cylindrical food at equal vertical intervals showing the change in heating potential from initial time to after 130 s of continuous heating.

Lighter shades of gray represent increased magnitude of heating potential.